Live User-Guided Intrinsic Video For Static Scenes

 

We present a novel real-time approach for user-guided intrinsic decomposition of static scenes captured by an RGB-D sensor. In the first step, we acquire a three-dimensional representation of the scene using a dense volumetric reconstruction framework. The obtained reconstruction serves as a proxy to densely fuse reflectance estimates and to store user-provided constraints in three-dimensional space. User constraints, in the form of constant shading and reflectance strokes, can be placed directly on the real-world geometry using an intuitive touch-based interaction metaphor, or using interactive mouse strokes. Fusing the decomposition results and constraints in three-dimensional space allows for robust propagation of this information to novel views by re-projection. We leverage this information to improve on the decomposition quality of existing intrinsic video decomposition techniques by further constraining the ill-posed decomposition problem. In addition to improved decomposition quality, we show a variety of live augmented reality applications such as recoloring of objects, relighting of scenes and editing of material appearance.

For more information, please see the project website.

Citation:
Meka. A., Fox, G., Zollhöfer, M., Richardt, C., Theobalt, C., 2017. Live User-Guided Intrinsic Video For Static Scenes. IEEE Transactions on Visualization and Computer Graphics, to appear.